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Abstract-A powerful complex transfer matrix approach to wave propagation perpendicular to the layering
of a composite of periodic and disordered structure is worked out showing propagating and stopping bands of
time-harmonic waves and the singular cases of standing waves, A state ratio of left- and right-going plane
waves is defined and interpreted geometrically in the complex plane in terms of fixed points and flow lines,
For numerical considerations and extension of the approach to higher dimensional problems a continued
fraction expansion of the state ratio mapping is presented, Impurity modes of wave propagation in
composites with widely spaced impurity cells of different elastic materials are discussed, Stopping bands in
the frequency spectrum of global waves in fully disordered composites are found to exist in the range of
frequencies corresponding to common gaps in the spectrum of cnstituent regular periodic composites which
are constructed from the cells of the disordered system, For those frequencies, waves propagate only a
(short) finite distance and are therefore strongly localized modes in a composite of fairly large extent.

1. INTRODUCTION

The gross dynamic behavior of composites has been explored in a large number of papers mostly
by approximate theories; for a review see Peck[l]. Only recently has Floquet theory been applied
to the analysis of the propagation of Floquet- or Bloch waves through periodically structured
composite media. Lee [2] considered a laminated periodically reinforced composite and studied
stress-profiles of Floquet waves propagating normal to the layering. Also the band-structure of
the frequency spectrum of time-harmonic Floquet waves is recognized in[2-4]. The spectrum
shows a strong dispersive character and frequency intervals where no Floquet waves propagate,
so called stopping bands. The analysis of the one-dimensional problems in the above mentioned
papers makes use of eigenfunctions. Extension to multi-dimensional periodic problems is
extremely difficult. The general aspects of waves in periodic structures showing stopping bands
and propagating bands is best described in the monograph by Brillouin [5]. Also the texts in
solid-state physics, e.g. Ziman [6] and Maradudin et ai. [7], study the theory of propagating
solutions of the Schrodinger equation in periodic lattices and these may be used to describe the
mathematically closely analogous elastic wave propagation. The transfer matrix method
described in this paper shows this analogy very clearly for both periodic and disordered
composites. Disordered lattices are also studied in physics, mainly by employing a Green's
function technique. For a continuum this analysis gives a rather formal solution and is extremely
difficult to evaluate, see Krumhansl[8]. On the other hand the matrix method employed to the
study of disordered composites has also an analog formulation in physics, see e.g. Hori[9].
Recently Mead [10] used a "structural" transfer matrix in connection with a "receptance"
function for the description of Floquet waves in periodic structures. The matrix methods are also
applicable to two- and three-dimensional wave propagation problems. The formulation shown in
this paper makes use of a continued fraction expansion of a complex state ratio of local left- and
right-going plane waves, which is extremely advantageous for parameter studies in the
engineering applications of composites. In the one-dimensional wave propagation considered
here the state ratio is a complex number which changes during propagation thereby running along
a circular "flow-line" in the complex plane. The various cases of propagating, nonpropagating
and standing Floquet waves are interpreted geometrically. Extension to disordered composites is
made and the possibility of stopping bands in the frequency spectrum of global waves is found.
The case of a single cell disturbance in a periodic array is treated and a localized so called
"impurity mode" at a frequency in the stopping band of the unperturbed periodic composite is
described. The result is applicable to composites having impurity cells in a wide distance, The
special case of two neighboring impurity cells is also treated in detail showing again the power of
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the matrix method employed. Transient problems of wave propagation in composites are equally
well described by transfer matrix multiplications or the application of the z-transformation to the
set of difference equations. The latter is employed in the four pole theory of electric transmission
lines which in this difference equation type formulation is also closely related to the study of
composites.

2. A LAMINATED COMPOSITE WITH PERIODIC STRUCTURE

A layered composite is considered with density p(x) and elastic stiffness 1/(x) varying
periodically in x with period a:

p(x +a) = p(x), 1/(x+a)=1/(x). (2.1)

The length a is the width of a simple cell consisting of one reinforcement sheet of thickness b
and one matrix sheet in perfect bond. This double-layer repeats periodicallY. We assume the
various sheets to be homogeneous, the index f referring to reinforcement properties and the index
m referring to matrix-sheet parameters.

Plane waves propagating perpendicular to the layering of the alternating linear elastic sheets
are solutions of the set of two differential equations:

(2.2)

where u(x, t) denotes stress and U denotes displacement. The equations may describe
longitudinal P-waves or transversal SH-waves, respectively. We consider steady oscillatory
waves of assigned circular frequency w, and hence write

U(X,t)=u(x)e-iw
/ (2.3)

to remove the time dependence from the equations. In matrix notation there follows:

~ {;} = c{;}
where

{
0 .,.,-I}c= 2 •

-pw 0

(2.4)

(2.5)

Solving eqn (2.4) for one homogeneous sheet of arbitrary length 1, displacement and stress at
the borders are related by

where

{
U(X + O} = T{U(X)}
U"(x + 0 U"(x)

(2.6)

!cos kl 1/~ sin kl }

- E. w 2 sin kl cos kl .
k

(2.7)

The expansion of the above exponential matrix function may be performed by the Cayley-
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Hamilton theorem. The wave number k of plane waves in the homogeneous sheet is defined by
k == wy'(pITI).

Considering the results (2.6), (2.7) in the reinforcement sheet with parameters p == PI, TI == TIl>
I == b and in the matrix sheet with parameters p == P..., TI = TI..., I a - b, respectively, and
invoking the continuity of displacement and stress at the common interface of the two sheets, the
"structural" transfer of a plane wave of assigned frequency w through one simple cell of number
n is found to be described simply by

where

(2.8)

and

{

COS f3 -Lk sin f3 )
TIm m

-tw'sinp cosp {

I. }cos a --;r sm a
T, == TI ,

P, 2'
- k, w sm a COS a

(2.9)

a kp=w7'I> f3==km(a b)=w7'm, k,=w!y'(Tldp,), km=wly'(TlmIPm),

7',= bly'(TI,!p,), 7'm == (a - b)/y'(TlmIPm). (2.10)

For perfect periodic composites the Floquet wave is of the form

u(x)= v(x)eiqX, vex) = vex + a) (2.11)

where vex) is a periodic function with period a and q denotes the Floquet wave number. From
that we have the quasiperiodic boundary condition

(2.12)

With A = eiq", eq (2.8), (2.12) render an eigenvalue problem and the frequency equation

where the stiffness ratio

(2.14)

is independent of frequency w. In propagating frequency bands q is real, in stopping bands q is
either imaginary or complex. At intermediate frequencies where q = n7T!a, n 1,2,3... in the
extended zone scheme, standing Floquet waves occur. The above formulation renders also the
eigenfunctions of displacement and stress and is a straight-forward procedure for periodic
composites. For disordered composites difficulties come along because (det T,) (det Tm ) 1" 1.

2.1 A state vector formulation
A different transfer type formulation considers left and right going waves separately, i.e.

u'" == Am eik
..

X + Bm e- ik
..
x na + b:5 X :5(n + 1)a

(2.15)

(2.16)

with a similar expression for stress. A two-dimensional state vector may be constructed by
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considering displacement waves in the form

(2.17)

If stresses are also included in the state vector we would end up with a four-dimensional state
vector and the state ratio, defined in eqn (2.33), which is a complex number, would become a
complex matrix. To avoid this complication, stresses are to be treated separately, if necessary.
Requiring continuity of displacement and stress at the interface within the cell, at x = na + b, U m

may be expressed by

U m = [I; PA I ei(a+kl'a) +I;P BI e-i(a+kl'a)] eikm(X-na-b)

+ [I; PAI ei(a+kl'a) + t; PBI e-/(a+kl'aJ] e-ikm(X-na-bJ (2.18)

Putting

(2.19)

and invoking continuity of displacement and stress at the cell interface at x = (n + I)a renders
the transfer of displacement through one cell to be

Xn + 1 = QXn ,

where the complex transfer matrix

is of Cayley type with real determinant

det Q = AA *- BB* = 1.

The coefficients A and B are given by

where

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)

and A *, B * are the conjugate complex expression to A, B. From the matrix eigenvalue problem

we find the frequency equation,

to be

(Q- OI)X= 0

det (Q - (1) = 0,

82 _20 A + A *+1=0
2

(2.25)

(2.26)

(2.27)
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with the two roots
8", = (ReA) ± y«ReA)2 - 1),

1
(ReA) = 1- R2 [cos (a +~) - R2cos (a - Ml.

The eigenvectors X", are solutions of the homogeneous equations
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(2.28)

(2.29)

(2.30)

As functions of w they may be called "limit vectors". In terms of these eigenvectors an arbitrary
state vector is expressed by the linear relation

(2.31)

and after one transfer through a cell

(2.32)

when Q is taken in its diagonal form. The minus sign is given to the eigenvalue with the larger
absolut real part. The discussion of three distinct cases corresponding to frequencies in the
propagating and stopping bands, respectively and the discrete intermediate frequencies is
simplified by the introduction of the complex state ratio

Zn = A/IB/

and its transfer through one cell by the "Mobius-transformation"

(2.33)

(2.34)

Equation (2.34) is a one to one conformal mapping of the zn-plane to a zn+t-plane. Circles in one
plane are mapped onto circles of the other plane. The fixed points of the transform are the state
ratios of the eigenvectors X", and are the roots of the equation

Z = (Az +B )/(B *z +A *)

which are given in terms of the eigenvalues 8", by

(2.35)

(2.36)

We call z'" limit points or may call z_ sink point and z+ source point. Let us consider the three
distinct cases (ReA)2> 1, (ReA? < 1, (ReA? = 1 corresponding to different frequencies w:

(a) Stopping bands: (ReA)2 > 1. There are finite bands of frequency w where (ReA)2 > lor

O<R<l. (2.37)

ReA is a doubly periodic function of frequency wand varies within ± (l +R2)/(l- R\ see Fig. l.
The eigenvalues 8", in this case are real and distinct. After one mapping the state vector Xn+\ is

obviously nearer to the sink vector X-, than Xn. Except the special cases Xn
= c-X_ or Xn = c+X+' in which case the direction of the state vector is left invariant.
Thus, in general, within these frequency intervals, every state vector (except the limit vectors) is
"attracted" by the sink vector X_ and "repulsed" by the source vector X+. Correspondingly,
every point in the complex plane Zn = An'IBn', except the limit points z"', approaches through the
Mobius transformation the sink point z- and recedes from the source point z+. The transfer
matrix is hyperbolic.
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2

f.c----f--+----f--+--f--t- l-R'

f-\-.,...-+-+-+-~:---+:---I--W(T,_T.)

I--\-+----"-+--+----+--+--____+_ -(1- R')

-1

-2

Fig. I. Propagatingand stopping frequency bands. Propagation .. ,(ReA)' < I. Spectral gaps, , ,(ReA)' > I. For
definition of ReA see eqn (2.29),

R=V(T/",-p",)-V(T/tPf)_~ Tf-T", 1r

V(T/",p",) +V(T/tPf) 6 Tf +7", = 4'

Geometrically we describe the transformation of the state ratio by a family of circles through
the fixed points in the complex plane. Since the state ratio moves along those circles we may them
call flow lines.

The orthogonal set of circles correspond to "potential" lines and represent a series of
successively mapped circles, see Fig. 2.

Fig. 2. Flow lines of state ratio to the sink point for stopping frequency w. State ratio at cell number n:z. = Ao'lBo'.
see eqn (2.33)ff. (ReA)' < I, w in a spectral gap. Sink point .. , L Source point ... z.,

The source point is extremely unstable, since any small disturbance in the state ratio
corresponding to this point is mapped by one transfer of the wave through a single cell away from
the source to the sink.

When the wave propagates through the regular system of cells, repeating periodically, the
state ratio is transformed by repeated operation of one and the same linear transformation
induced by Q. Without loss of generality we may assume IZn I=' 1. After a number of transfers the
state ratio has moved on the unit circle close to the sink point and the phase 8n , where

(2.38)

changes nearly equal to an integral multiple of 217", the multiplicity being determined by the nature
of the unit cell. Thus, the total amount of phase change over the whole (infinite) system of cells
can increase with frequency within this hyperbolic interval at most by a finite amount. This
means, there can exist at most only a finite number of eigenvalues in such an interval of w, which
are associated with local modes of propagation. They are determined during the finite number of
initial transfers and may be regarded as the "end" effect. In an infinite system they may be
neglected. The density of the frequency spectrum must vanish in any of these hyperbolic
intervals. They correspond to spectral gaps or stopping bands.
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The Floquet wave number, defined by
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(2.39)

is imaginary or complex. The phase is, so to speak, locked at the sink phase IL and its advance is
prevented throughout the hyperbolic interval.

(b) Propagating bands: (ReA)2 < 1. The open intervals of frequency between the stopping
bands give distinct conjugate complex eigenvalues (L, 6! = 6+. Hence, there is no tendency for
any point Zn to approach or recede from a fixed point. In fact, the flow lines form a family of
circles enclosing the fixed points. The flow lines and the orthogonal set of successively mapped
circles through the fixed points are shown in Fig. 3.

The transfer matrix is elliptic. In the perfect periodic system we have propagating waves, the
phase ~n is never locked but can increase freely with frequency w. Moreover, the total amount of
phase change is proportional to the extension of the system. The spectral density does not vanish
throughout the elliptic interval, we may speak of propagating bands.

(c)Standing waves: (ReA)2 = 1. In this intermediate case the eigenvalues 6+ = 6_, are real
double roots. The fixed points coincide z+ = z-. The flow lines touch each other at this double
point (dipole). Any state ratio Zn approaches this limiting point, see Fig. 4. The transfer matrix is
parabolic. The phase is a periodic function over a number of cel1s. The discrete values of w

correspond to standing waves or purely vibrating cel1s.

Fig. 3 Fig. 4

Fig. 3. Flow lines of state ratio around limiting points for propagating frequency w. State ratio at cell number n:
z. = A.'IBo', see eqn (2.33)11. (ReA)2> I, w in a propagating band. Limiting points ... z., L.

Fig. 4. Flow lines of state ratio in caseof standingwaves. State ratio at cell number n: z. =Ao'lBo', see eqn (2.33)11.
(ReA)' = 1, discrete values of w corresponding to standing waves. (Coinciding limiting points ... z. = L).

The frequencies in the parabolic case may be calculated from the pair of transzendental
equations

(k = 0,1,2 ...)

(2.40a)
and

(k = 0,1,2 ...).

(2.40b)

2.2 Continued fraction expansion of state ratio mapping
The same conclusions as from the above geometric interpretation can be drawn from the

uniform convergence properties of a continued fraction expansion of the Mobius transformation.
For convenience we rewrite the transfer

A/ - A*Zn+l + B
Zn =-, = *Bn B Zn+l- A

A*( 1 1 )
-B* l-A*A-B*Zn+1 (2.41)
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l/(A +A *f

A
z" =B*

I/(A +A*)2
A +A * [1 _

B*

1---------------
I/(A +A *)2

1--------------
I/(A +A *)2

1-------------
1/(A +A *)2

1------------
1/(A +A *)2

1----------- (2.42)

The number w.. := (I/(A + A*»(A* + B*z.. ) converges uniformly over an interval of frequency w

(a stopping band) when I/(A + A *)2:s; ~ or equivalently (ReA)2 ~ 1 and the value is
11/(1 + w.. ) - 4/31 :s;~, due to a theorem by Worpitzky. This formulation is applicable to two- and
threedimensional wave propagation problems. The state ratio becomes a matrix and the
nominators in the continued fraction are also matrices. For composites of finite extent one may
use the above representation or the transfer matrix of a "non-simple" cell, given by Q". The latter
can be reduced by the Cayley-Hamilton theorem to

(2.43)

An analogous but more convenient form can be found by substituting

to be

(2.44)

f
A -A*

sinhn ---
Q" := I cosh n{ + -.--{ 2

smh{ B*

In the parabolic case, (ReA)2 = I:

f
A -A*

coshn ---
Q" =Icoshn{+n--{ 2

cosh { B*
_A!A*}

2 '

(2.45)

(2.46)

The formulation (2.44)-(2.46) is preferred in papers on electric transmission lines and is given by
Sauer and Szab6[1I, p. 420].

2.3 Phase and group velocity of propagating Floquet waves
Substituting ReA = cos (qa), where q denotes the wave number of the Floquet wave, the

doubly periodic relation

(2.47)

may be used to generate an implicit function for the group velocity in propagating bands,
(ReA)2 < I:

dw a 1- R 2
•

Cg :=-=-- smqa,
dq Tf + Tm • (+ ) Tf - Tm R 2 ' (+ ) Tf - Tmsmw Tf Tm --+- smw Tf Tm --

Tf Tm Tf + Tm

w~ O. (2.48)
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The parabolic case of standing waves in qa == k7r (k == 0, 1,2 ...) renders for w t- 0, c. == O.
In the limit w ~ 0, group velocity and phase velocity become equal:
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The high frequency limit of the Floquet phase velocity becomes

lim ~ == a/(Tf + Tm ).
",~q

q~

(2.49)

(2.50)

Frequency spectrum and group velocity are plotted in Fig. 5. The filter properties of a laminated
composite can be clearly recognized.

3. A LAMINATED COMPOSITE WITH DISORDERED STRUCTURE

Disorder may be substitutional (cellular) or structural (geometric) in nature. In the course of
this paper we assume a geometrically perfect periodic arrangement of cells, which show a slight
cellular disorder in the material properties:

p(x) == Po(x) +ep.(x) (3.1)

(3.2)

where PI and 7/1 are nonperiodic. The mixed system may be described by a set of transfer
matrices {Qi}' i == 0, 1, 2, 3, .... In regular (periodic) systems the phase is transferred
successively by a periodic series of one of the Qi'S, while in disordered systems it is transferred
by a deterministic, or more realistic, by a random series of these matrices.

All quantities pertaining to a particular transfer matrix, e.g. QI are specified by the same index
j. For example, the limit vectors and the limit phases are denoted by X±til and 5±til, respectively.

1 0.8 06 0.4 0.2

SS Vol. 13, No. 4-C

~~_----l_-'----..Ja
a a TlI2 Tl qa

Fig. Sea).

c.~

12lt

L.L-._-'---_-----' a
0.8 0.6 0.4 02 0 a TtI2 1l qa

Fig.5(b).
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Fig.5(c). Fig.5(d).

Fig. 5. Frequency spectrum (reduced zone scheme) and group velocity of Floquet waves. In the stopping bands
group velocity is zero.

In the stopping bands group velocity is zero.

(a). R = Y(T/mPm) - Y(T//p/) 1 'T/-Tm =!!.
Y(T/mPm) +Y(T//p/) 3' rf +T", 4

Frequency spectrum is nonperiodic.

(b). R = Y(T/mPm) - Y(T/JP/) 5 'T/-Tm =!!.
Y(T/mPm) +y(T/JP/) 6' Tf + Tm 4

Frequency spectrum is nonperiodic.

(c). R = Y(T/mPm) - Y(T/JP/) = ~ T/-Tm=!
Y(T/mPm)+ Y(T/JP,) 6' T/ + Tm 2

Frequency spectrum is periodic with period 417.

(d) R = Y(T/mPm)-Y(T//p,) 5
Y(T/mPm) +Y(T/,p,) 6'

Frequency Spectrum is periodic with period 817.

Further, the regular periodic system which is described by one of the members of the set, e.g. Qk'
is called the k-th constituent (regular) system of the mixed composite.

Suppose now, that in an interval of w every transfer matrix belonging to the set {Q;} is
hyperbolic, that is if (ReAd2 > det Q; for every i, this interval corresponds to a spectral gap for
every constituent regular system. In such an interval, all the limit points Z±(i) lie on the unit circle.
The interval spanned by the set of sink points {LU)} will be called sink interval and that spanned
by {z+(i)} source interval. Correspondingly, {8_(i)} and {8+(i)} may be called sink phase-and
source phase interval, respectively, see Fig. 6.

Suppose further, that the sink phase and source phase intervals on the unit circle are disjoint.
Then, for any w lying in the common gap of the constituent composites, the phase eventually
comes, during successive transformations in the mixed system, into the sink phase interval, and
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Fig. 6. Flow line of state ratio in case of a frequency flJ in the common "stopping band" of the disordered
composite. {B_(f)} ... source interval. State ratio at cell number N: z. =A.'IB/, see eqn (2,33). (ReA.)' >detQ..

i = I, 2, 3 .... For transfer matrix Q. see eqn (2.2 I).
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once it has come in, it is trapped in it and can never escape therefrom. Thus, locking of phase
occurs.

The results are cast in a theorem due to Hori and Matsuda [9]:
"If (a) an interval of frequency W corresponds to a stopping band for every constituent

regular periodic system, and (b) in that interval the sink- and source phase intervals are disjoint, it
gives a spectral gap of the mixed disordered system described by the set {QI}. The set of matrices
{QI} may be cal1ed a phase disjoint set."

If for a given system the condition (a) is a necessary consequence of the condition (b), we
derive the sufficient condition for a forbidden band being the smal1est common gap of all
constituent regular systems (known in solid state physics as Saxon-Hutner statement).

3.1 A single cell impurity
In a regular periodic system described by the transfer matrix QI an impurity pair of laminates

forming a cell described by the different transfer matrix Qo is embedded. For the value of wunder
consideration QI is assumed hyperbolic. The phase at the cell border before the impurity cell is
therefore IL(I). Through the impurity cell, there is a possibility that 8_(1) is transferred by Qo to an
appropriate value 8}1), so that the phase reaches any arbitrary value far away from the impurity
cell. This descrete value of W gives an eigenvalue Wimp corresponding to an impurity mode of
propagation. Since QI is hyperbolic, Wimp must lie outside the propagating bands of the regular
periodic composite. On the other hand, the state vector becomes longer and longer as it
approaches the impurity, in fact, it reaches X_(I), and shorter and shorter as it leaves it. In other
words the eigenmode corresponding to an impurity frequency is strongly localized around the
impurity. The amplitude of an impurity mode decays towards either direction like a geometrical
senes.

In Fig. 7 it is assumed, that the phase actual1y increases by 217' during one transfer by Qb while
the phase change by Qo is smaller than 217'. For W < Wimp the phase is retarded by the impurity.
For W > Wimp a sudden acceleration of phase change occurs, which in physics is cal1ed the slip of
the phase.

3.2 Several impurity cells
The situation depicted in the foregoing paragraph remains essentially the same, if there are

many impurities, provided that they are sufficiently apart from one another. Within a narrow

Fig. 7. Change of phase of the state ratio by a single impurity cell for frequency flJ in the stopping band of the
regular periodic composite. Frequency of localized impurity mode ... flJ..... For flJ < flJ..... the phase of the state
ratio is retarded by the single impurity cell. For flJ > flJ...., the phase of the state ratio is accelerated by the single

impurity cell. dB ... phase change of state ratio in the impurity cell.
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interval of w, many slips occur successively at different impurity cells, and correspondingly there
appear a large number of eigenfrequencies around the impurity frequency of an isolated impurity
in the stopping band of the regular system.

If two or more inpurity cells are not sufficiently far apart, the phase fails to come into a narrow
neighborhood of D~(I) just before the second impurity, so that the situation changes, as depicted
in the following Fig. 8.

There are several possibilities for the phase to be transferred from 0 _(I) through the double
impurity cell to 0+(1), corresponding to several discrete values of w in a stopping band of the
regular system. These impurity frequencies w\~p, w\;:p, ... correspond to localized impurity
modes of propagation. In the first case depicted in Fig. 8 the sum of phase changes in both of the
impurity cells is less than 27T, corresponding to w\~p, in the second case scetched in Fig. 8 the sum
of phase changes overshoots the first one by 27T, creating a second impurity frequency w~;:p.

b~)

8')+

b~)

b~)

Fig. 8. Change of phase of the state ratio by two neighboring impurity cells for frequency w in the stopping
band of the regular periodic composite. Frequencies of the localized impurity modes ... w:.:,'.. wl;!•. In the two
cases w< w:.:,'. or w< wl;!., the phase of the state ratio is retarded by the impurity cells. In the two cases
w> w:.:,'. or w> wl;!., the phase of the state ratio is accelerated by the impurity cells. All, ... phase change of

state ratio in the first impurity cell. ~t52' .. phase change of state ratio in the second impurity cell.

4. CONCLUSIONS

The transfer matrix approach outlined in this paper is suitable for computer studies of various
composite materials. It is not restricted to single cells of two layers it may be extended to
multi-layered cells repeating periodically or being disordered. In the latter case the stopping
bands are easily found from so called sink intervals. Localized impurity modes propagating in the
spectral gap of a regular periodic composite surrounding a single or double cell impurity are
easily described by the concept of phase transfer, associated with the complex transfer matrix.
Extension of the matrix method to include geometric imperfections in the consideration of
structural disorder will be later published.

A continued fraction expansion of the state ratio mapping makes it possible to treat two- and
threedimensional wave propagation problems in periodic and disordered composites.
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